Creativity for the software engineer: a novel organic paradigm with applications
Zviel-Girshin, Rina, Ruppin Academic Center, Israel
rinazg@ruppin.ac.il

Creativity is the most valuable resource of the Software Engineer. The higher education institutions should prepare students to creatively solve problems, design and implement SE products. It is of highest importance throughout the industry and it is crucial in the engine of our 21st century economy – the startups.

In view of above said we would assume that students are highly motivated to learn and acquire creativity techniques and that lion’s share of Software Engineering studies at all levels is dedicated to nurturing the creative side of the future Software Engineer. Moreover, after school it would expected that the Software Engineer, having the advantage of real life experience, will value even more the creativity trait, and apply a substantial percent of her time to enhancement of creativity and to working the creative way. And the captains of industry certainly, one would suppose, invest very substantially in this resource.
In the real life we witness a paradox. The great value of creativity is the result of its inherent difficulty and rarity. But there is the rub. The difficulty entails the rarity.

Creativity is very difficult to teach and learn. Therefore the motivation of both student and teacher is less than desirable. In studies the author has conducted, creativity was graded as the most difficult and least motivating topic for the undergraduate SE student and teacher. And before that in K-12 studies, and afterwards in the industry the situation is not better, maybe even worse.
The solution proposed is to get to the roots of the problem and try more appropriate basic approach – an organic one – Organic Creativity (OC) paradigm. In very general terms we tried to analyze the basic problems such as fear to err, writers block, difficulty to operate on a more abstract level, lack of experience and know-how and difficulty to formalize the creative process. The answer is to use a non-formal approach, though still scientific but drawing from natural sciences. When being creative the Software Engineer should act less as mathematician and more as a doctor or an agronomist. She should grow the revolutionary creative outside-the-box solution using the life cycle of doctor following his patient or agriculture expert growing her trees. The dialectics, the different possible approaches and solutions is not an impediment but an opportunity.
Among the principles of OC:

· Dialectics: exploring different directions

· Immersion in real life but with rigorous feedbacks and valid science
· Just like some artists first dirty their canvas, we should overcome the fear to err with brainstorming and exploring various directions first, without worrying about avoiding contradictions
· Interactivity, learning and evolution mechanisms
· Concretizing the abstract
· A special creative life cycle

· Reflection and feedback

· Large data base and knowledge base

· There is the need for constant learning from kindergarten to end of career.
Using her position as teacher for 17 years and head of IS program and labs, the author have very successfully tried real life applications of OC at different ages: students from kindergarten to high school and especially undergraduate students of SE.
One of the OC applications implemented is a basic Object Oriented Programming course. The course is a regular course in which students learn basic concepts of OOP including classes, objects, visibility, inheritance, polymorphism, templates and more. Every week or two students get a programming assignment to implement some new concepts and knowledge. In the past all of the assignments were rigidly defined by the course staff. During the years different variations of the assignments were tested: from single not connected assignments every time to one large project (case study) divided into parts and implemented during the course. No matter which model of the assignments was chosen students found it very difficult to implement new cases/classes during the exam. In feedback questionnaires students and teachers reported a great difficulty. For several years the author has tested aspects of OC to encourage their creativity (such as so called “flipped assignments”). After solving several assignments written by the course staff the students got a large assignment (mini-project) in which they choose a case study in an area that interests the student. Students had to define, design and implement several classes including inner objects, inheritance, polymorphism and more. Students find this assignment to be very difficult and demanding during the course but report this assignment to be a good teaching method after the end of the course. The use of OC environment improved dramatically the attitude towards creative aspects of OOP.
After several years of design and implementation, the OC paradigm evolved into useful technology environment. At the heart of the environment is an Expert System enhanced with special mechanisms for learning and evolving, not shunning from contradictions but embracing them. Though it is not fully automated yet, it becomes more and more so, growing a much greater knowledge base.
At this point the OC environment is ready to be deployed, and we hope that in the near future such an environment will grow into commercial product and used throughout the industry.
First Author Dr. Rina Zviel-Girshin, Head of Knowledge Systems and robotics Lab, Rupin Academic Center; Head of compilation field at Open University. Fields of interest are AI applications, Educational software, Robotics, Internet of Things, STEM education.
