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INTRODUCTION

Selective feeding is an important mechanism by
which animals optimize their diet, e.g. by maximizing
their energy gain or avoiding harmful food. It is well
documented that selective predation in pelagic habi-
tats structures the microbial community (Pernthaler
2005). Less is known of interactions in benthic habi-
tats. At the benthic boundary layer, microbial commu-
nities take advantage of an enhanced flux of nutrients
and organic matter (Gast et al. 1998, van Duyl & Gast
2001, Seymour et al. 2005), but at the same time they
are exposed to enhanced predation by benthic sus-

pension feeders (Pile 1997, Yahel et al. 1998, Schef-
fers et al. 2005). Sponges are key grazers in many
benthic habitats (Diaz & Rutzler 2001, Richter et al.
2001, Ribes et al. 2005, Scheffers et al. 2005).
Although we now know that many benthic suspension
feeders, such as bivalves, are selective in their diet
(Cranford & Gordon 1992, Ward & Shumway 2004),
the notion that sponges can selectively ingest food
from the water they filter is not well acknowledged,
despite a growing number of studies to support this
(Jørgensen 1966, Reiswig 1971, Frost 1980, Wilkinson
et al. 1984, Vyver et al. 1985, Pile et al. 1996, Turon
et al. 1997, Ribes et al. 1999). 
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munities in pelagic habitats. While less is known of predation on microbial communities in benthic
habitats, the abundance and high filtering capacity of sponges suggests that they are key grazers. We
studied the feeding preferences of two of the most common glass sponges of North-East Pacific fjords,
Rhabdocalyptus dawsoni and Aphrocallistes vastus. Sponges were maintained in large darkened
tanks supplied with running seawater from the nearby fjord. The water inhaled and exhaled by the
sponges was simultaneously sampled and analyzed using a flow cytometer. Both sponges showed a
similar (but not identical) feeding pattern, efficiently removing up to 99% of the most abundant bac-
terial cells, whereas clays, silt, and ‘debris’ particles were expelled into the exhaled water. Filtration
efficiencies were maximal for the relatively large and rare eukaryotic algae (3 to 5 µm, 86 ± 9%) and
for small non-photosynthetic bacteria (<0.4 µm, 89 ± 10%), while intermediate sized non-photosyn-
thetic bacteria characterized by higher nucleic acid content were efficiently removed in February
(92 ± 3%) when overall plankton concentration was low, but not in July (28 ± 16%). The intermedi-
ate sized photosynthetic prokaryote Synechococcus (1.1 to 1.5 µm) was also less preferred. Detailed
analysis of the ultrastructure of the glass sponge filtration apparatus argues against possible ‘by-pass’
routes. We suggest that selective filtration involves individual processing, recognition, sorting, and
transport of each particle through the sponges’ syncytial tissue. Selective grazing by glass sponges,
like their pelagic protozoan counterparts, could be an important mechanism shaping microbial com-
munities in the detrital food web of North-East Pacific fjords.
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Sponges are reported to have a wide spectrum of
nutritional strategies, including uptake of dissolved
organic matter (Wilkinson & Garrone 1980, Reiswig
1981, Yahel et al. 2003), complex symbiotic associations
with phototrophic (Sara 1971, Wilkinson 1983) and
chemosynthetic microorganisms (Diaz & Ward 1997,
Hoffmann et al. 2005) and even carnivory (Vacelet et al.
1995). However, sponges are widely recognized as effi-
cient filter feeders, feeding primarily on micron sized
prokaryotic prey (Jørgensen 1966, Reiswig 1971,
1975b, Gili et al. 1984, Wilkinson et al. 1984). More
recent studies have shown that ultraphytoplankton
(<10 µm) is also a major constituent of the diet of marine
demosponges from shallow waters (Pile 1997, Ribes et
al. 1999, Pile et al. 2003, Yahel et al. 2003). 

The sponge body consists of extensive water canals
and chambers. A single layer of cells (choanocytes),
lining the surface of densely packed spherical cham-
bers, creates a unidirectional water current which car-
ries oxygen and food particles and removes wastes
(Jørgensen 1966). Sponges filter vast volumes of water
(60 to 900 times their volume per hour, reviewed by
Yahel et al. 2003). In some marine and freshwater envi-
ronments they are the principal filter-feeding macro-
invertebrates (Pile et al. 1997, Richter et al. 2001,
Scheffers 2005), leading to the suggestion that feeding
by sponges has a great effect on benthic–pelagic pro-
cesses (Richter et al. 2001, Ribes et al. 2005, Yahel et
al. 2007). 

Glass sponges (class Hexactinellida) prefer deeper
water (>100 m) worldwide, and in some locations (e.g.
Antarctica, and coastal North East Pacific) meter tall
glass sponges form the bulk of the filter-feeding popu-
lation, sometimes reaching densities of tens of individu-
als m–2 (Dayton et al. 1974, Conway et al. 2001, Leys et
al. 2004). Glass sponges also dominated ancient deep-
sea habitats, forming reefs over 700 km2 in the Tethys
Sea during the Jurassic (Ghiold 1991, reviewed in
Krautter et al. 2001). Despite the potential importance
of glass sponge feeding in present and past deep-sea
habitats, few studies have examined their diet and the
role of glass sponges in benthic–pelagic coupling, in
large part due to the difficulty of working at depth. 

In the Northeast Pacific, glass sponges dominate
fjord and inlet walls below the photic zone (Leys et al.
2004) and in some places form extensive bioherms
(sponge reefs, Conway et al. 1991). However, their
distribution is limited to deeper waters (>25 m). The
factor(s) limiting the vertical distribution of the glass
sponges are not yet understood, but food availability
has been implicated as one possible factor (Leys et al.
2004). In a pioneering in situ feeding study, Reiswig
(1990) reported that 2 species of glass sponge, Rhabdo-
calyptus dawsoni (Lambe, 1892) and Aphrocallistes
vastus (Schulze 1886), may have very different reten-

tion efficiencies for bacteria (0 and 18%, respectively),
and that R. dawsoni may rely largely on dissolved
organic carbon. These results suggested that glass
sponges have significantly different feeding strategies
than demosponges; however, high variance, due to
disturbance to the water surrounding the specimens
while sampling and to the unpredictable pumping
activity of R. dawsoni, meant that the data was incon-
clusive. More recently, ultrastructural studies by Perez
(1996) and Wyeth (1999) showed that glass sponges
can efficiently retain micron sized beads and bacteria,
like their demosponge relatives. Most recently, Yahel
et al. (2007) used a remotely operated submersible to
study glass sponge feeding in their deep habitat
(150 m) on the walls of a North-East Pacific fjord. Both
species fed primarily on non-photosynthetic bacteria
and small protozoans with no evidence for uptake of
dissolved organic matter or detritus. The calculations
of Yahel et al. (2007) suggest that the glass sponge
population in a typical North-East Pacific fjord may
annually filter an amount of water equivalent to the
entire volume of the fjord water, thereby processing
>20% of the carbon exported into the deep fjord
waters each year.

In situ studies have the advantage of identifying
uptake of food by sponges in their natural habitat, but
do not demonstrate whether the animals are capable of
taking up other particles at other times or under other
conditions. To test the range of sponge feeding
selectivity for different particle types, the filter-feeding
abilities of Rhabdocalyptus dawsoni and Aphro-
callistes vastus were examined in a controlled environ-
ment in which the sponges experienced minimal dis-
turbance. By drawing water from Bamfield Inlet,
British Columbia, Canada, the sponges were pre-
sented with a variety of naturally occurring food par-
ticles, including photosynthetic populations naturally
available only to the uppermost sponge populations. 

MATERIALS AND METHODS

Study organisms. Rhabdocalyptus dawsoni (Lambe,
1892) and Aphrocallistes vastus Schulze 1886 co-occur
in fjord habitats, with R. dawsoni reaching slightly shal-
lower depths (up to 18 m; Leys et al. 2004) than A. vas-
tus. The 2 sponges differ significantly in the nature of
their outer covering. Spicules projecting from the outer
surface of R. dawsoni are brown with accumulated sed-
iment forming a ‘spicule coat’ that is inhabited by nu-
merous epi-fauna and epi-flora (Boyd 1981). In contrast,
A. vastus has a clean outer surface. Both species lack
conspicuous populations of symbiotic bacteria (Reiswig
1979, Mackie & Singla 1983). In their natural habitat, on
vertical walls, R. dawsoni tends to be confined to the
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benthic boundary layer; the body lies within 10 cm of
the wall and the osculum projects only 20 cm off the
wall. In contrast, A. vastus typically extends up to 1 m
away from the wall. Both R. dawsoni and A. vastus
cease feeding when exposed to heavy sediment loads.
However, while A. vastus appears to be fairly refractory
to disturbance, arresting pumping only momentarily,
arrests by R. dawsoni are typically much longer (min-
utes to hours, Leys & Tompkins 2004).

All specimens were collected from the vertical walls
of an underwater canyon near San Hosie Islets
(48° 54.261’ N, 125° 2.6358’ W), Barkley Sound, Van-
couver Island, British Columbia, Canada. Both glass
sponge species attach to the walls by a silica base (Leys
& Lauzon 1998). Aphrocallistes vastus was collected
from a depth of 130 to 170 m using a remotely operated
from vehicle; intact specimens were carefully de-
tached from the wall at their base using the manipula-
tor arms. Specimens of Rhabdocalyptus dawsoni were
collected by SCUBA divers from 25 to 30 m in February
and July 2004. In both cases, sponges were promptly
transferred, without removal from cold seawater at any
time, to darkened aquaria at the Bamfield Marine
Sciences Center. 

Five individuals of each species were arranged in a
large tank (1.70 × 0.75 × 0.22 m). Previous studies have
indicated that glass sponges only do well if supplied
with fresh running seawater (Wyeth et al. 1996, Leys
et al. 1999). Therefore, the experimental tank was
equipped with a constant supply of running seawater
pumped from the nearby Bamfield Inlet (25 m depth,
~2 m above bottom). Water temperature ranged from 9
to 10 and 12 to 13°C and water salinity was 26.5 and
29.5 in February and July, respectively. We used 3
inflow water hoses and vigorous water flow (20 l min–1

per hose) to ensure short residence time (<5 min) and
thorough mixing of tank water to minimize the effect of
sponge feeding on ambient water. The specimens of
Rhabdocalyptus dawsoni ranged in length from 12 to
19 cm with oscula internal diameter of 1.5 to 2.5 cm,
while specimens of Aphrocallistes vastus were 12 to
36 cm long with oscula 2 to 15 cm in diameter. 

Water sampling. In order to measure the sponge fil-
tration efficiency we compared the contents of the
water inhaled and exhaled by the sponge using the
direct method of Wright & Stephens (1978). Small tub-
ing was used to simultaneously siphon the water
inhaled (ambient) and exhaled by the sponge. The dif-
ference in concentrations of a certain substance
between a pair of samples provides a direct measure of
the retention (or production) of the substance by the
animal. Stainless wire wrapped around the tubing
allowed precise positioning of the ends of the tubing
1 cm in the osculum of each sponge to collect exhaled
water. Separate pieces of tubing were positioned

adjacent to the sponges to collect ambient (inhaled)
water. Retort stands and lab clamps held the tubing in
place, such that water could be sampled continuously
from the sponges without the need to move either tub-
ing or sponges. At no point did the tubing make con-
tact with the sponges. To avoid contamination of
exhaled water with ambient water (Yahel et al. 2005)
we used Tygon tubing with an internal diameter of
0.79 mm and ~1 m in length. Suction was initiated by a
syringe and continued by gravitation. Sampling ves-
sels were located in an ice bath outside of the tank,
~30 cm below the water surface. This setup ensured a
slow suction rate (<1.5 ml min–1), 2 orders of magni-
tude slower than the sponge pumping rate (use of
fluorescein dye to visualize pumping by the sponges
indicated that excurrent flow rate was always >100 ml
min–1). The pumping activity of each specimen sam-
pled was visualized using fluorescein dye during the
initial setup of the sponges, 60 and 20 min before water
samples were collected, and directly after collection of
water samples. Water samples were collected into
sterile 500 ml glass bottles (February) or directly into
2 ml cryotubes (July). Samples were preserved using
0.4% glutaraldehyde (final concentration, 15 min incu-
bation in room temperature), frozen in liquid nitrogen
and stored at –80°C.

Flow cytometry. For analysis by flow cytometry, we
followed the protocol of Marie et al. (1999), using a
488 nm, air-cooled Argon-ion laser flow cytometer
(FACSCalibur, Becton Dickinson). Non-photosynthetic
bacteria were analyzed following staining with the
nucleic acid dye SYBR Green I (Molecular Probes, 
S-7567, Marie et al. 1997) at a final concentration of
10–4 of the commercial stock. Samples were incubated
for 25 min in the dark at room temperature. Flow rate
was set to low (6 to 8 µl min–1, measured daily) and
inhaled and exhaled water samples were analyzed
sequentially for 2 min each. Particles with low ratio of
green fluorescence to light scatter were considered as
non-living seston (NLS). Ultraphytoplankton was
quantified in unstained samples using their red/orange
auto-fluorescence. Particles with low ratio of red fluo-
rescence to light scatter were considered as detritus. A
unique cluster of large detrital particles (LDet) was evi-
dent in most samples. These samples were analyzed at
a high flow rate (60 µl min–1) using low Fl3 (red fluores-
cence) threshold for 5 min each. Amplifications and
threshold were adjusted as needed, but exhaled water
samples were always analyzed after the corresponding
inhaled water sample using the inhaled water sample
settings. A tube containing filtered Milli-Q water was
mounted in between inhaled and exhaled water sam-
ples to prevent, and control for, carryover contamina-
tion that could result in an underestimate of removal
efficiency. Yellow fluorescent beads (1 µm) (Flow-
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Check High Intensity Green Alignment, Polysciences,
23 517) were introduced into each sample as an inter-
nal standard and all cellular parameters were normal-
ized to the beads’ value. Negative controls were run
with 0.2 µm filtered seawater or double distilled water
with and without stain and preservative to ensure sam-
pling integrity. 

Flow cytometry data were collected in list mode
using Cell Quest software. All cellular parameters
were recorded on a 4 decade logarithmic scale using
1024 channels. Sample analysis and normalization to
beads was done using CytoWin (Vaulot 1989, Ver. 4.31,
2003). Contour plots were made using WinMDI
(J. Trotter, http://facs.scripps.edu). Forward scatter is
correlated to particle size and equivalent-sphere-
volume. Because these relationships are roughly linear
for up to ~5 µm particles (Robertson et al. 1998, Caven-
der-Bares et al. 2001), forward scatter is widely used as
a relative or absolute measure of size (Cavender-Bares
et al. 2001, and references therein). We report the ratio
of forward scatter of particles to the forward scatter of
1 µm beads in µm units. Since we neither measured the
cells microscopically nor calibrated our flow cytometer
measurements (Cavender-Bares et al. 2001, Shalapy-
onok et al. 2001), the sizes given here should be
regarded as approximations, especially for larger par-
ticles (>8 µm), the limit of the dynamic range used.
Due to this limitation the flow cytometer counts were
not transformed to cell biomass. 

Sorting and microscopy. To further examine the
composition of the particulate matter in the water
inhaled and exhaled by the sponge, we used a Field
Emission Scanning electron microscope (JOEL 6301)
equipped with an Energy dispersive X-ray (EDX) Ana-
lyzer (Princeton Gamma Tech). A subset of the samples
fixed for flow cytometry in July 2004 were filtered
through 0.05 µm Millipore filter membranes, rinsed 5
times with double distilled water, air dried (while cov-
ered to prevent accumulation of dust), and coated with
chromium. Each filter was scanned at low magnifica-
tion; 10 to 20 particles were selected at random and
examined at high magnification. We used EDX micro-
analysis (Leppard et al. 1997) to determine the elemen-
tal composition of the particles (~1 µm2). Particles with
high aluminum and silica content were recorded as
clay (<3.9 µm) or silt (>3.9 µm). Clays were also identi-
fied visually by their characteristic edges. To clarify the
identity of the LDet cluster we used a FACS Vantage
flow cytometer (Becton Dickinson) equipped with an
SE Turbo-Sort cell sorter. Sorted particles were filtered
and examined by SEM-EDX as above.

Water samples from the February 2004 experiment
were also analyzed for nitrate, phosphate, silicic acid,
total organic carbon, and dissolved organic carbon.
These data are reported elsewhere (Yahel et al. 2007).

Preparation of specimens for scanning electron
microscopy was carried out as described in Eerkes-
Medrano & Leys (2006).

Statistical analysis. Statistical analysis was carried
out using SPSS 12.0 for windows. Data are reported as
average ±1 SD unless stated otherwise. In classical
grazing experiments, the suspension feeder activity
affects food concentrations in the experimental vessel
(Chesson 1983, Riisgård 2001). Measuring direct filtra-
tion efficiency as was done here allows estimation of
Chesson’s selectivity index (αi) as the maximum likeli-
hood estimator (Case 1 in Chesson 1983):

where m is the number of prey types and Fi is the filtra-
tion efficiency for the ith prey type, calculated as Fi =
(Ini – Exi)/Ini, where Ini and Exi are the concentrations
of the ith prey type in the water inhaled and exhaled
by the studied sponge, respectively. A separate αi was
calculated for each paired water sample. For better
visualization, αi were rescaled to εi using the equation
(Chesson 1983):

εi = (mαi – 1)/[(m – 2)αi + 1]

Values of εi range from –1 when none of the ith prey
type is taken, to 1 when the ith prey type is the only
one selected for. However, since the statistical proper-
ties of the εi are not fully resolved, statistical inference
was done solely with the αi s (Chesson 1983). To meet
ANOVA requirements of homogeneity of variance and
normality, filtration efficiency was square root and arc-
sine transformed and Chesson αi s were square root
transformed. For Repeated Measure ANOVA (RM
ANOVA) we also tested the compound symmetry and
sphericity assumptions (i.e. cases in which differences
between levels were correlated across subjects) using
Mauchly’s Test of Sphericity and compared the results
of the univariate test with Wilks’ λ (a multivariate crite-
rion). The mean of each level (prey taxa) was com-
pared to the mean of all of the levels (grand mean)
using a planned comparisons ‘Deviation’ contrast.
Post-hoc pairwise comparisons were calculated using
LSD (least significant difference) adjustment for the
confidence interval (95%) of the marginal means. The
terms ‘selectivity’ and ‘preference’ are used here in the
narrow sense to denote differential retention. 

Our comparisons of cell properties were especially
robust due to the paired sampling design applied
throughout sample collection and analysis (the same
populations were compared in the same water prior to
and after the passage via the sponge filtration appara-
tus using the same analytical settings). The normaliza-
tion to calibration beads provided additional protection
against instrumental drifts.
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RESULTS

Both Rhabdocalyptus dawsoni and Aphrocallistes
vastus showed similar but not identical size indepen-
dent selectivity in their feeding preferences, efficiently
removing up to 99% of the cells from the smallest
and most abundant bacterial population (Fig. 1A,B,
Table 1) and up to 94% of the larger and rare eukary-

otic algae. Non-photosynthetic bacteria with interme-
diate sized cells (HNA-hs, high nucleic acid, high
light scatter) were efficiently removed in February,
when overall plankton concentration was low (Table 1,
Figs. 2A & 3), but not in July when plankton concentra-
tion was high. Retention efficiencies in July for HNA-
hs were as low as 0% (Table 1, Fig. 2B). Synechococ-
cus cells were less preferred by R. dawsoni in February
and by A. vastus in July. Comparison of αi for the
different prey items shows that the frequency of the
intermediate sized taxa in the sponge diet was signifi-
cantly lower than expected based on their ambient
abundance, indicating negative selection. Similarly,
inorganic sediment grains and debris were not re-
tained by the sponges but rather expelled into the
excurrent water (Fig. 1). 

Ambient ultra-plankton populations

In a sharp contrast to deeper fjord water where most
glass sponges reside (150 m, Yahel et al. 2007), phyto-
plankton cells and phytoplanktonic debris accounted
for a large proportion of the seston in the shallower
waters used for this study. 

In February, prior to the initiation of the spring bloom,
ultraplankton concentration was relatively low. Ultra-
phytoplankton (Synechococcus + eukaryotic algae)
concentration was 6.8 ± 0.3 × 103 cells cm–3 and non-
photosynthetic bacteria concentration was 3.7 ± 0.4 ×
105 cells cm–3. Two major bacterial populations (LNA
and HNA-ls, low nucleic acid and high nucleic acid,
low light scatter, respectively) comprised 97% of the
non-photosynthetic bacteria. LNA cells were on aver-
age 25% smaller and their nucleic acid content was
about half that of the HNA-ls cells (Fig. 1A, Table 1). 

In July, ultraphytoplankton concentration was an
order of magnitude higher than in February (6.91 ±
1.54 × 104 cells cm–3). The non-photosynthetic bacterial
population also increased 4-fold in July (1.64 ± 0.52 ×
106 cells cm–3), and a third bacterial population (HNA-
hs, Table 1, Fig. 1A) was present in relatively high
numbers (1.4 ± 0.4 × 105 cells cm–3). However, the
mean size of LNA and HNA-ls cells was 27 and 48%
lower in July than in February, respectively, while
their side scatter and nucleic acid content (green fluo-
rescence) remained essentially the same. 

Plankton removal

Considering all ultraplanktonic cells (<10 µm), the
filtration efficiency of Rhabdocalyptus dawsoni was
high during both February (94 ± 2%) and July (83 ±
7%). Feeding by Aphrocallistes vastus was measured
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(D,F), where mostly non-living seston remain (NLS, sediment
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LNA HNA-ls HNA-hs
R. dawsoni A. vastus R. dawsoni A. vastus R. dawsoni A. vastus

Feb Jul Jul Feb Jul Jul Feb Jul Jul

Ambient conc. 191±19 428±164 443±98 171±21 1191±392 738±151 11±0 136±42 180±117
Forward scatter 0.3±0.1 0.2±0.0 0.2±0.0 0.4±0.0 0.3±0.1 0.3±0.0 0.4±0.0 0.4±0.0 0.4±0.0
(size, µm)

Side scatter 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.09±0.00 0.13±0.02 0.14±0.02
Green fluorescence 0.1±0.0 0.1±0.0 0.1±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.3±0.0 0.5±0.0 0.4±0.1
% removed 92±2 93±3 84±12 97±0 89±5 82±14 92±3 17±18 35±12

Synechococcus Eukaryotic algae LDet
R. dawsoni A. vastus R. dawsoni A. vastus R. dawsoni A. vastus

Feb Jul Jul Feb Jul Jul Feb Jul Jul

Ambient conc. 3±0 57±14 59±3 4±0 13±4 8±1 2±1 105±13 64±7
Forward scatter 1.4±0.1 1.2±0.1 1.3±0.1 3.6±0.3 4.1±0.5 3.8±0.5 26.1±3.1 8.6±1.6 9.6±0.7
(size, µm)

Side scatter 0.1±0.0 0.1±0.0 0.1±0.0 0.4±0.1 0.4±0.0 0.5±0.0 9.9±1.7 1.8±0.3 2.0±0.2
Green fluorescence 2.3±0.3 2.2±0.3 4.1±0.3 14.0±2.6 18.6±1.7 25.7±2.6 3.7±1.0 1.5±0.1 1.7±0.1
% removed 80±3 86±15 68±11 91±1 84±11 82±11 –76±60 –6±46 –43±23

Table 1. Ambient concentration (×1000 ml–1), optical characteristics, and filtration efficiencies of the 5 planktonic populations and
of sediment and detrital particles (LDet) during the 3 inhaled/exhaled feeding experiments. Values (average ± SD) were
determined using flow cytometry; optical properties are normalized to the values of 1 µm beads. In February 2004, the ex-
periment was repeated twice with 5 specimens of Rhabdocalyptus dawsoni. In July 2004 the experiment was repeated 3 times
with 3 specimens of R. dawsoni and 5 times with 5 specimens of Aphrocallistes vastus. Filtration efficiency statistics were cal-
culated over specimen averages. Green fluorescence is a proxy of nucleic acid content. Forward scatter normalized to the forward
scatter of 1.0 µm beads is a proxy of size. LNA: low nucleic acid content; HNA-ls: high nucleic acid content, low light scatter;

HNA-hs: high nucleic acid content, high light scatter
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(D), July 2004. Chesson αis (Ches-
son 1978) were rescaled to εi so
that it would be independent of the
number of prey types available
(Chesson 1983). εi ranges from –1,
when none of the ith prey type is
taken, to 1 when the ith prey type
is the only one selected for. Zero is
the expected value for εi if there is
no preference (Chesson 1983). Er-
ror bars = ±SE. LNA: low nucleic
acid content; HNA-ls: high nucleic
acid content, low light scatter;
HNA-hs: high nucleic acid con-

tent, high light scatter 



Yahel et al.: Selective feeding by glass sponges

only in July and its total filtration efficiency (78 ± 12%)
during that time was comparable to that of R. dawsoni.
Electron microscopy of paired water samples from the
July experiments indicated that inhaled water samples
contained several small diatom species (<12 µm), coc-
colithophorids, and a variety of unidentified naked
cells. Intact cells comprised up to 50% of the particles
(>1 µm) in inhaled water samples. In contrast, only 2
intact cells (diatoms) were found in the exhaled water
samples, whereas the presence of broken/stripped
frustules and cellular debris was much higher. 

Individual sponge specimens differed in their filtra-
tion efficiency (Fig. 2A,B), but the preference pattern
of each specimen was remarkably consistent among
repeated runs (see the small error bars in Fig. 2A,B).
This consistency of individual specimen performance

was demonstrated by the lack of significant differences
between the runs in each of the separate Doubly RM
ANOVA for the 3 experiments (we used ‘Runs’ as the
first factor with 2 to 5 levels and ‘Prey type’ as the sec-
ond factor with 5 levels, p > 0.1). Therefore, specimen
data were pooled across runs and specimen means
were used for subsequent analysis. An RM ANOVA
over all specimen means revealed a significant differ-
ence between the filtration efficiency of the different
planktonic prey types (Wilks’ λ = 0.07, F4,7 = 22.6, p <
0.001). However, significant interaction terms indi-
cated that this pattern differed between the 2 sampling
seasons (Wilks’ λ = 0.03, F4,7 = 67.7, p < 0.001) and
between the 2 sponge species (Wilks’ λ = 0.14, F4,7 =
10.5, p = 0.004). Similar results were also obtained for
αi. Therefore, the differences between the 2 sponge
species were compared only within the July experi-
ment, while differences between seasons were com-
pared only for Rhabdocalyptus dawsoni.

Rhabdocalyptus dawsoni

The filtration efficiencies of Rhabdocalyptus dawsoni
specimens during the February experiment were gen-
erally high (>90%), except for a slightly less efficient
removal of the photosynthetic cyanobacteria Syne-
chococcus (80 ± 3%, Fig. 2A). Small non-photosyn-
thetic bacteria (HNA-ls) were the most preferred prey
type (filtration efficiency range 96 to 99%, Fig. 2A).
Comparison of αi indicated that this preference was
highly significant (F1,4 = 205.0, p < 0.001, Fig. 2C). For
Synechococcus, a negative selection was observed,
with αi being significantly lower than the expected
value for no selectivity (F1,4 = 50.5, p = 0.002, Fig. 2C). 

When exposed to the post bloom ultraplankton com-
munity of July 2004, Rhabdocalyptus dawsoni filtration
patterns were significantly different from those in Feb-
ruary (F1,6 = 14,532, p < 0.001). This difference was pri-
marily due to a dramatic reduction in the filtration of
the largest non-photosynthetic bacterial population,
HNA-hs (Fig. 2B,D). Cells falling in the HNA-hs cluster
were removed in February at 86 to 98% efficiency
whereas in July, filtration efficiency averaged 17%
(Table 1). During the July experiments, the smallest
non-photosynthetic bacterial population (LNA) was
retained at the highest efficiency (92 ± 2%), but its
retention was not significantly different from the filtra-
tion efficiency of HNA-ls (86 ± 5%, Table 1, Fig. 2B).
Overall, plankton filtration efficiency was independent
of ambient plankton concentrations or cell sizes, and
taxa with intermediate size and abundance were the
least preferred prey (Fig. 3A). R. dawsoni was some-
what more efficient and more selective than Aphrocal-
listes vastus (see below).
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Aphrocallistes vastus

Aphrocallistes vastus showed high selectivity (RM
ANOVA, F4,16 = 29.8, p < 0.001) and its preference
pattern resembled that of Rhabdocalyptus dawsoni
(Fig. 2B,D). Comparison of αi for the July experiments
showed no significant difference or interaction
between prey type and sponge species (RM ANOVA,
F1,6 = 0.64, p = 0.46). As for R. dawsoni, the intermedi-
ate sized non-photosynthetic bacteria belonging to the
HNA-hs population were the least preferred cell
type (filtration efficiency 35 ± 12%). Synechococcus
cyanobacteria were also significantly less preferred
(post-hoc pairwise comparison, p < 0.003) in compari-
son to both smaller and larger cells (LNA and HNA-ls
bacteria and eukaryotic algae, respectively, Table 1).
In comparison to R. dawsoni, A. vastus filtration effi-
ciencies tended to be somewhat lower (Table 1,
Fig. 2B,D) and discrimination against the HNA-hs pop-
ulation was less dramatic, resulting in a significant
interaction term between prey type and sponge spe-
cies for the July experiment (RM ANOVA, Wilks’ λ =
0.038, F4,3 = 19.1, p = 0.018). Similar to R. dawsoni, the
plankton filtration efficiency of A. vastus was indepen-
dent of the ambient plankton concentrations, with the
least preferred taxa having intermediate abundances
(Fig. 3B).

Sediment and detrital particles

Flow cytometry, electron microscopy, and EDX
microanalysis of paired water samples from the July
experiments indicated that inhaled water samples con-
tained a large proportion of inorganic clays and silt as
well as clay aggregates, often with broken diatom frus-
tules. Particles in the cluster we named LDet (Fig. 1E,
see ‘Materials and methods’) were characterized by a
low ratio of red and green fluorescence to light scatter,
corresponding to low (or nil) chlorophyll and nucleic
acid content, respectively. SEM-EDX analysis of sorted
LDet particles indicated that this cluster contained 50
to 70% clay/silt aggregates, 20 to 50% broken diatom
frustules and other cellular debris, and 0 to 17%
unidentified particles of mixed (organic/inorganic)
composition. SEM-EDX analysis also indicated that a
large proportion of the particles falling outside of the
LDet cluster definitions were also composed of clays,
clay aggregates, and debris. In some exhaled water
samples, up to 82% of the non-living particles
detectable with the flow cytometer were outside the
LDet region (Fig. 1E,D). 

LDet particles were not removed by the sponge
(Table 1); in fact, the concentration of the LDet parti-
cles was elevated in all paired samples taken from

Aphrocallistes vastus in July and from Rhabdocalyptus
dawsoni in February, but in only a third of the paired
samples obtained from R. dawsoni in July. Ambient
LDet concentration was much higher in July in com-
parison to February (Table 1). The concentration of
LDet in the exhaled water sample was positively corre-
lated to the total inhaled plankton concentration (r =
0.89, p < 0.001); however, when the partial correlation
was calculated, taking into account the effect of
inhaled LDet concentration, this correlation was
deemed insignificant (r = 0.32, p = 0.31).

DISCUSSION

The idea that sponges are non-selective filter feed-
ers stems from the presumption that the sponge col-
lar microvilli are one of the few examples of a true
filter (Riisgård & Larsen 2001). Despite interpreta-
tions of non-selectivity by sponges that persist in the
literature (Alexander 1979, Pile & Young 1999,
Kowalke 2000), data in some of these papers (e.g.
Fig. 2B in Pile et al. 1996, and Fig. 2 in Kowalke
2000) suggest clear differential retention of particles.
Furthermore, a growing literature shows that selec-
tive retention does occur in many sponges. A prefer-
ence for smaller particles was reported by Reiswig
(1971), Frost (1980), and Witte et al. (1997), whereas
Turon et al. (1997) report that 2 Mediterranean
demosponges retained 1 µm latex beads at higher
efficiency in comparison to both smaller (0.5 and
0.2 µm) and larger (4 µm) beads. Wilkinson et al.
(1984) used radioactive labeling to demonstrate dis-
crimination between symbiotic and ‘food-type’ bac-
teria in 2 tropical sponges. Some of the above ambi-
guity on selective feeding in sponges may stem from
the ability of some demosponges to ingest (into spe-
cialized phagocytes) many types of particles (re-
viewed by Witte et al. 1997) and subsequently
release unwanted items into the exhalent currents
(Wilkinson et al. 1984).

Glass sponge diet and selectivity

The natural diet of glass sponges (Hexactinellida)
has been difficult to study because of their deep habi-
tat and the difficulty of controlling for arrests of the
feeding current in field studies (Reiswig 1990, Perez
1996, Wyeth et al. 1996, Wyeth 1999). In this study, we
exposed the glass sponges Aphrocallistes vastus and
Rhabdocalyptus dawsoni to a wide range of prey types
including ultraphytoplankton, naturally available only
to the uppermost sponge populations. Both species
efficiently filtered and retained ultraplanktonic cells
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while debris and suspended sediment were expelled
into the exhaled waters (Table 1, Fig. 1C,E,F). More-
over, both glass sponges exhibit strong, size indepen-
dent, discrimination among ultraplanktonic prey types
(Figs. 1 & 2, Table 1). 

Biomass consideration

We estimated the relative contribution of the differ-
ent food types using relative cell sizes and general car-
bon/volume relationships suggested for protists
(Menden-Deuer & Lessard 2000) and bacteria (Gun-
dersen et al. 2002). These calculations indicate that
eukaryotic algae accounted for the bulk of the ultra-
planktonic biomass (>70 and >80% during the July
and February 2004 experiments, respectively). Syne-
chococcus accounted for an additional ~15% of the
total ultraplanktonic carbon in July and for ~5% in
February. Therefore, the contribution of non-photo-
synthetic bacterial biomass was relatively small
(<15%) in both seasons. The less preferred bacterial
population (HNA-hs) accounted for up to 46% of the
non-photosynthetic bacteria biomass in July (average
25 ± 9%), but only for 7 ± 3% of the total bacterial bio-
mass in February. 

Phytoplankton

The water used in this study was pumped from the
bottom of the photic zone (Taylor & Haigh 1996), close
to the upper limit of glass sponge distribution (Leys
et al. 2004). During the February experiment, non-
photosynthetic bacteria concentration (3.7 ± 0.4 ×
105 cells cm–3) was about a third of the concentrations
reported by Yahel et al. (2007) for the deep sponge
habitat (8.4 ± 2.2 × 105 cells cm–3), whereas  values
were 2 times higher (16.4 ± 5.2 × 105 cells cm–3) dur-
ing the July experiments. The most prominent differ-
ence between the laboratory experiments reported
here and the field measurements of Yahel et al. (2007)
was the demonstration of sponge ability to feed on
phytoplankton when present in the ambient water.
The efficient filtration of phytoplankton suggests that
the potential nutritional niche of the studied glass
sponges is much wider than that realized by the bulk
of the population that resides well below the photic
zone. Glass sponges living at or near the photic zone
will benefit from a potential increase of 5- to 10-fold
in the amount of carbon and nutrient obtained for
each liter of water they process. Other factors such as
silica, light and temperature are likely to limit the
glass sponge distribution to below the photic zone
(Leys et al. 2004).

Non-photosynthetic bacteria 

It is now well accepted that cytometric clusters are
correlated with phylogenetic association and meta-
bolic activity (e.g. Zubkov et al. 2001). The LNA, HNA-
ls and HNA-hs non-photosynthetic bacterial popula-
tions in our samples roughly correspond to the LNA
and low protein, HNA and low protein, and HNA and
high protein groups defined by Zubkov et al. (2001) for
the Celtic Sea. Using in situ hybridization techniques,
Zubkov et al. (2001) demonstrated that γ-proteobacte-
ria from the SAR86 cluster were associated with their
LNA cytometric population. The HNA-ls population
was associated mostly with members of the Cyto-
phaga-Flavobacterium cluster, and the HNA-hs popu-
lation was dominated by the γ-proteobacteria genus
Roseobacter. Subsequent work has demonstrated sim-
ilar phylogenetic affiliation of flow cytometry-sorted
bacteria for other localities such as the coastal waters
off Plymouth, UK (Zubkov et al. 2004), and the North
Sea (Zubkov et al. 2002). Comparison of the ultra-
plankton population in our summer water samples
(July 2004) with the winter samples (February) indi-
cates large shifts in abundance and optical properties
(Table 1), suggesting a shift in the taxonomic composi-
tion and/or the metabolic status of each population
seasonally. Members of the Roseobacter lineage are
known to increase their abundance during the summer
and in association with algal blooms. Many of these
lineage members produce potent toxins or other sec-
ondary metabolites (Buchan et al. 2005). As the phylo-
genetic identity of the different cytometric populations
is not known, it is premature to speculate why the pop-
ulation of HNA-hs was less preferred in July 2004. 

Synechococcus

The pattern of preference for Synechococcus
cyanobacteria varied between seasons and among the
2 sponge species: Rhabdocalyptus dawsoni selected
against Synechococcus in February but not in July
(Table 1, Fig. 2), whereas Aphrocallistes vastus
selected against Synechococcus during the July exper-
iments (Fig. 2). This negative selection for Synechococ-
cus by hexactinellid sponges is intriguing as Syne-
chococcus and Prochlorococcus appear to be the most
preferred prey type by those marine demosponges
examined so far (Pile et al. 1996, Pile 1999, 2005, Ribes
et al. 1999, Yahel et al. 2003, 2005). Synechococcus
was also preferentially removed from the water flow-
ing over coral reefs (van Duyl et al. 2002). In contrast,
recent grazing studies in pelagic oligotrophic waters
suggest that these cells are the least grazed by plank-
tonic consumers (e.g. Sommer et al. 2002) and Syne-
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chococcus was also the least preferred prey type of 2
freshwater sponges from Lake Baikal, Russia (Pile et
al. 1997).

Suspended sediment and detritus

Glass sponges, like most other benthic suspension
feeders, need to cope with an extremely diluted sus-
pension of food particles dominated by inorganic, indi-
gestible particles. At the sponges’ habitat, the benthic
boundary layer seston is dominated by inorganic parti-
cles (~7 mg l–1, >97% of suspended solids, Yahel et al.
2007). In a coarse clay dominated seston (~1 µm), these
levels correspond to >5 × 107 particles cm–3 (Kirk &
Gilbert 1990), an order of magnitude higher than the
ultra-planktonic cell concentration available to the
sponges (max. 2.4 × 106 cells cm–3). While high concen-
trations of inorganic seston can be detrimental for
some suspension feeders such as cladocerans (Kirk &
Gilbert 1990) and bivalves (Cranford & Gordon 1992),
other taxa such as rotifers seem to be unaffected (Kirk
& Gilbert 1990). Bivalves use pre-ingestion sorting and
eliminate unwanted particles as pseudo-faeces to
avoid the burden of ingestion and digestion of large
masses of suspended sediments (Cranford & Gordon
1992, Ward & Shumway 2004). Our knowledge of the
fate of indigestible food particles inhaled by sponges is
rudimentary (Wolfrath & Barthel 1989).

Both Rhabdocalyptus dawsoni and Aphrocallistes
vastus selected against inorganic and debris particles
(Fig. 1, Table 1). We used the well-defined cluster of
LDet (Fig. 1) particles as an indicator of the fate of indi-
gestible particles inhaled by the sponges.

As suggested by the SEM analysis, the increased
concentration of LDet particles in most exhaled water
samples can be partially attributed to the ‘transforma-
tion’ of intact armored cells (e.g. diatoms, coccol-
ithophorids) into stripped shells. Wolfrath & Barthel
(1989) report that the demosponge Halichondria pan-
icea packages singly ingested particles into spherical
aggregates held together by a thin cover. Only edible
remnants were packaged into fecal pellets, whereas
indigestible particles were egested as single particles
and also passed more rapidly through the sponge
(Wolfrath & Barthel 1989). Microscopical analysis of
exhaled water samples in our study revealed only a
few fecal-pellet-like aggregates, composed mostly of
crushed diatom frustules and cellular debris. However,
it is plausible that delicate aggregates making up fecal
pellets disintegrated during sample preservation and
handling. 

It should be noted that LDet particles were relatively
large (7 to 10 µm in July, larger in February) and the
total concentration of the LDet particles never

exceeded 1.5 × 105 particles cm–3 in the ambient water
(<15% of total ultraplanktonic cells). Therefore the
LDet population comprises only a small fraction of the
total number of non-living particles in the water. In
many cases the LDet cluster accounted for <20% of the
total non-living seston detectable with the flow
cytometer (e.g. Fig. 1E). 

Filtration mechanism

The details of the filtration mechanism in sponges
are not well understood. In demosponges, dermal
pores (ostia) vary in size from 10 to 200 µm, canals are
20 to 200 µm in diameter, and prosopyles (pores lead-
ing into the flagellated chambers) are 2 to 5 µm in
diameter (Reiswig 1975a). The collar filter unit does
not seal the chamber in many demosponges (e.g. Lan-
genbruch & Scaleraliaci 1986), and it is possible that
particles not trapped by the collar (whose mesh size is
approximately 0.1 µm) could escape the sponge filter
(see also Leys & Eerkes-Medrano 2006). 

In principle, the hexactinellid filter is similar to that
of demosponges. The pores in the syncytial dermal
membrane (surface inhalant tissue) are only 20 to
30 µm in diameter, incurrent canals are large (up to
1 mm in diameter) initially, but taper to 200 µm dia-
meter as they near the choanocyte chambers, much as
in demosponges. The collar microvilli are only 0.1 µm
in diameter, and are spaced 0.1 to 0.2 µm apart
(Fig. 4A). Microvilli are joined by a double layer of
glycocalyx mesh with 20 to 200 nm diameter pores
(Mackie & Singla 1983). The most obvious difference,
apart from the syncytial tissue organization and enu-
cleate collar bodies (see Mackie & Singla 1983), is the
large size of choanocyte chambers (up to 60 µm inner
diameter, 120 µm outer diameter) and the presence of
a secondary reticulum supporting the collars (Reiswig
1979, Leys 1999, Fig. 4). Except for instances where
prosopyles of the primary and secondary reticula line
up (see Leys 1999) this reticulum appears to effectively
prevent passage of particles except through the collar
microvilli (Fig. 4), presumably making the hexactinel-
lid filter very efficient (Reiswig 1979).

The existence of bypasses, ‘merging between the
incurrent and excurrent systems bypassing the
choanocyte chambers’, has been suggested for both
demosponges and glass sponges (Bavestrello et al.
2003, and references therein). It is hard to reconcile the
high filtration efficiencies we observed with the exis-
tence of such bypass routes. Moreover, considering the
ultrastructure of the glass sponge filtration apparatus,
it is hard to imagine a physical process that would
allow sorting and differential retention of micron sized
particles such as HNA-ls vs. HNA-hs bacteria using
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hydrodynamics. The high filtration efficiency observed
for some cell populations suggests that the vast major-
ity of particles larger than 0.1 to 0.2 µm are trapped by
the sponge filter. These results suggest that particle
selection in hexactinellids takes place post capture.
Sponges do not possess digestive organs and digestion
takes place intracellularly within food vacuoles. Pre-
ingestion sorting may occur within the trabecular retic-
ulum. Indigestible and unwanted particles captured by
this tissue may be transported directly through to the
exhaled water while preferred food particles may be
similarly transported into food vacuoles. Alternatively,
the sponge may not actively select cells intracellulary,
but rather some cell types could resist breakdown and
pass through the food vacuoles intact (e.g. Van Donk et
al. 1997). 

The existence of bypass routes can be tested experi-
mentally by ‘feeding’ the glass sponges with readily
identifiable indigestible particles (e.g. fluorescent
beads) in a dye solution (e.g. sodium fluorescein). Co-
appearance of the dye and beads in the exhaled water
would confirm the existence of bypasses. Alternatively,
if the beads were to appear a few minutes after addi-
tion of the dye, this would support the model sug-
gested here of individual trapping and processing of
each particle (G. O. Mackie pers. comm.). 

One consequence of the individual particle process-
ing proposed here is that the cellular processes
involved (endocytosis, intracellular transport, and
exocytosis) potentially introduce a significant time
delay between the ingestion and egestion of sestonic
particles. While our simultaneous sampling scheme

ensures accurate detection of changes in dissolved
water constituents, it may have introduced bias in the
comparison of the particulate input and output of the
sponges. This is particularly relevant in July when
sampling time was brief (a few minutes) and less
likely in February when the large volume of water
collected and the prolonged sampling duration
(>10 h) ensure proper integration of the inherent
plankton patchiness. To examine if the lack of gen-
uine pairing of the inhaled and exhaled water sam-
ples may have biased our results, we calculated the
sponge filtration efficiencies for the July experiment
using the averages of the 5 inhaled and  5 exhaled
water measurements obtained for each specimen to
compute single removal efficiency and a single αi

value for each planktonic population (see Fig. 5). This
analysis confirms there is negative selection against
the HNA-hs bacteria (α = 0.1 ± 0.04 and 0.09 ± 0.02
for Aphrocallistes vastus and Rhabdocalyptus daw-
soni, respectively) and Synechococcus by A. vastus
(α = 0.19 ± 0.01) but not R. dawsoni (α = 0.22 ± 0.02).
RM ANOVA indicated that removal efficiency of dif-
ferent planktonic prey differed significantly for both
A. vastus (F4,16 = 32.7, p < 0.001) and R. dawsoni
(F4,8 = 61.1, p < 0.001). Student-Newman-Keuls post-
hoc pairwise multiple comparisons indicated that the
removal of the HNA-hs population was significantly
lower (p < 0.05) than all other prey types in both
sponge species, whereas the removal of Synechococ-
cus was significantly lower in comparison to Eukary-
otic algae and the LNA and HNA-ls bacteria for A.
vastus but not for R. dawsoni. 
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Fig. 4. Aphrocallistes vastus. Scanning electron micrographs of the filtration apparatus showing the flagellum (fl) enclosed by
the ring of collar microvilli (mv) and the position of the primary (1r) and secondary reticula (2r). Note that the secondary reticu-
lum abuts the microvilli collar and prevents material from escaping the filter. (A) Fractured specimen showing a side view with
white arrows showing putative water and particle pathways from the inhalant canals and through the collar (b, 1 µm latex bead).

Open arrows indicate the putative water path. (B) Top view
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Sponges filter a vast volume of water (see Table 3 in
Yahel et al. 2003 for demosponge values) and thus pro-
cess a huge number of particles daily. With such
throughput is it possible for individual sorting of parti-
cles to occur? Indeed, considering typical bacterial
concentrations of 0.8 × 105 cells ml–1 and a specific
pumping rate of 1.3 cm3 s–1 cm–3 sponge tissue, 1 cm2 of
A. vastus wall would process ~109 bacteria d–1 (corre-
sponding to an excurrent velocity of 1 cm s–1 based on
in situ pumping Acoustic Doppler Velocimeter mea-
surements, Yahel et al. 2007, G. Yahel unpubl. data).
However, considering a typical flagellated chamber
(external diameter ~120 µm) that contains about

2750 collar bodies and a flagellated chamber density of
~50% of the sponge volume, the collar unit density in a
typical Aphrocallistes vastus is ~1.5 × 109 cm–3 (H. M.
Reiswig pers. comm.). Therefore, each collar unit is
expected to encounter ~1 bacterium and possibly 10
indigestible particles per day. This low encounter rate
could presumably give the syncytial tissue sufficient
time to individually process and select particles upon
encounter. 

We suggest that unlike most suspension feeders
(Rubenstein & Koehl 1996, Riisgård & Larsen 2001),
including some sponges (Leys & Eerkes-Medrano
2006), the filtration apparatus of the glass sponges
studied does resemble a true sieve. We conclude that
the selective retention we observed involves individual
processing, recognition, sorting, and transport of each
particle through the sponges’ syncytial tissue. This
assertion is supported by observations of capture and
processing of bacteria and 1 µm latex beads by the
hexactinellids Rhabdocalyptus dawsoni (Wyeth et al.
1996, Wyeth 1999) and Oopsacas minuta (Perez 1996). 
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